Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Wisdom of Committees: An Overlooked Approach To Faster and More Accurate Models (2012.01988v6)

Published 3 Dec 2020 in cs.CV

Abstract: Committee-based models (ensembles or cascades) construct models by combining existing pre-trained ones. While ensembles and cascades are well-known techniques that were proposed before deep learning, they are not considered a core building block of deep model architectures and are rarely compared to in recent literature on developing efficient models. In this work, we go back to basics and conduct a comprehensive analysis of the efficiency of committee-based models. We find that even the most simplistic method for building committees from existing, independently pre-trained models can match or exceed the accuracy of state-of-the-art models while being drastically more efficient. These simple committee-based models also outperform sophisticated neural architecture search methods (e.g., BigNAS). These findings hold true for several tasks, including image classification, video classification, and semantic segmentation, and various architecture families, such as ViT, EfficientNet, ResNet, MobileNetV2, and X3D. Our results show that an EfficientNet cascade can achieve a 5.4x speedup over B7 and a ViT cascade can achieve a 2.3x speedup over ViT-L-384 while being equally accurate.

Citations (42)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube