Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 419 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

ImmuNeCS: Neural Committee Search by an Artificial Immune System (1911.07729v4)

Published 18 Nov 2019 in cs.NE, cs.LG, and stat.ML

Abstract: Current Neural Architecture Search techniques can suffer from a few shortcomings, including high computational cost, excessive bias from the search space, conceptual complexity or uncertain empirical benefits over random search. In this paper, we present ImmuNeCS, an attempt at addressing these issues with a method that offers a simple, flexible, and efficient way of building deep learning models automatically, and we demonstrate its effectiveness in the context of convolutional neural networks. Instead of searching for the 1-best architecture for a given task, we focus on building a population of neural networks that are then ensembled into a neural network committee, an approach we dub 'Neural Committee Search'. To ensure sufficient performance from the committee, our search algorithm is based on an artificial immune system that balances individual performance with population diversity. This allows us to stop the search when accuracy starts to plateau, and to bridge the performance gap through ensembling. In order to justify our method, we first verify that the chosen search space exhibits the locality property. To further improve efficiency, we also combine partial evaluation, weight inheritance, and progressive search. First, experiments are run to verify the validity of these techniques. Then, preliminary experimental results on two popular computer vision benchmarks show that our method consistently outperforms random search and yields promising results within reasonable GPU budgets. An additional experiment also shows that ImmuNeCS's solutions transfer effectively to a more difficult task, where they achieve results comparable to a direct search on the new task. We believe these findings can open the way for new, accessible alternatives to traditional NAS.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube