Papers
Topics
Authors
Recent
2000 character limit reached

Relative Lipschitzness in Extragradient Methods and a Direct Recipe for Acceleration

Published 12 Nov 2020 in math.OC, cs.DS, and cs.LG | (2011.06572v2)

Abstract: We show that standard extragradient methods (i.e. mirror prox and dual extrapolation) recover optimal accelerated rates for first-order minimization of smooth convex functions. To obtain this result we provide a fine-grained characterization of the convergence rates of extragradient methods for solving monotone variational inequalities in terms of a natural condition we call relative Lipschitzness. We further generalize this framework to handle local and randomized notions of relative Lipschitzness and thereby recover rates for box-constrained $\ell_\infty$ regression based on area convexity and complexity bounds achieved by accelerated (randomized) coordinate descent for smooth convex function minimization.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.