Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Universal Algorithm for Variational Inequalities Adaptive to Smoothness and Noise (1902.01637v1)

Published 5 Feb 2019 in cs.LG, math.OC, and stat.ML

Abstract: We consider variational inequalities coming from monotone operators, a setting that includes convex minimization and convex-concave saddle-point problems. We assume an access to potentially noisy unbiased values of the monotone operators and assess convergence through a compatible gap function which corresponds to the standard optimality criteria in the aforementioned subcases. We present a universal algorithm for these inequalities based on the Mirror-Prox algorithm. Concretely, our algorithm simultaneously achieves the optimal rates for the smooth/non-smooth, and noisy/noiseless settings. This is done without any prior knowledge of these properties, and in the general set-up of arbitrary norms and compatible Bregman divergences. For convex minimization and convex-concave saddle-point problems, this leads to new adaptive algorithms. Our method relies on a novel yet simple adaptive choice of the step-size, which can be seen as the appropriate extension of AdaGrad to handle constrained problems.

Citations (68)

Summary

We haven't generated a summary for this paper yet.