Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extragradient and Extrapolation Methods with Generalized Bregman Distances for Saddle Point Problems (2101.09916v3)

Published 25 Jan 2021 in math.OC, cs.NA, and math.NA

Abstract: In this work, we introduce two algorithmic frameworks, named Bregman extragradient method and Bregman extrapolation method, for solving saddle point problems. The proposed frameworks not only include the well-known extragradient and optimistic gradient methods as special cases, but also generate new variants such as sparse extragradient and extrapolation methods. With the help of the recent concept of relative Lipschitzness and some Bregman distance related tools, we are able to show certain upper bounds in terms of Bregman distances for gap-type measures. Further, we use those bounds to deduce the convergence rate of $\cO(1/k)$ for the Bregman extragradient and Bregman extrapolation methods applied to solving smooth convex-concave saddle point problems. Our theory recovers the main discovery made in [Mokhtari et al. (2020), SIAM J. Optim., 20, pp. 3230-3251] for more general algorithmic frameworks with weaker assumptions via a conceptually different approach.

Citations (4)

Summary

We haven't generated a summary for this paper yet.