Papers
Topics
Authors
Recent
2000 character limit reached

Toward Trainability of Quantum Neural Networks

Published 12 Nov 2020 in quant-ph | (2011.06258v2)

Abstract: Quantum Neural Networks (QNNs) have been recently proposed as generalizations of classical neural networks to achieve the quantum speed-up. Despite the potential to outperform classical models, serious bottlenecks exist for training QNNs; namely, QNNs with random structures have poor trainability due to the vanishing gradient with rate exponential to the input qubit number. The vanishing gradient could seriously influence the applications of large-size QNNs. In this work, we provide a viable solution with theoretical guarantees. Specifically, we prove that QNNs with tree tensor and step controlled architectures have gradients that vanish at most polynomially with the qubit number. We numerically demonstrate QNNs with tree tensor and step controlled structures for the application of binary classification. Simulations show faster convergent rates and better accuracy compared to QNNs with random structures.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.