Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Optimizer-Dependent Generalization Bound for Quantum Neural Networks (2501.16228v1)

Published 27 Jan 2025 in quant-ph

Abstract: Quantum neural networks (QNNs) play a pivotal role in addressing complex tasks within quantum machine learning, analogous to classical neural networks in deep learning. Ensuring consistent performance across diverse datasets is crucial for understanding and optimizing QNNs in both classical and quantum machine learning tasks, but remains a challenge as QNN's generalization properties have not been fully explored. In this paper, we investigate the generalization properties of QNNs through the lens of learning algorithm stability, circumventing the need to explore the entire hypothesis space and providing insights into how classical optimizers influence QNN performance. By establishing a connection between QNNs and quantum combs, we examine the general behaviors of QNN models from a quantum information theory perspective. Leveraging the uniform stability of the stochastic gradient descent algorithm, we propose a generalization error bound determined by the number of trainable parameters, data uploading times, dataset dimension, and classical optimizer hyperparameters. Numerical experiments validate this comprehensive understanding of QNNs and align with our theoretical conclusions. As the first exploration into understanding the generalization capability of QNNs from a unified perspective of design and training, our work offers practical insights for applying QNNs in quantum machine learning.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.