Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 97 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 92 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Kimi K2 175 tok/s Pro
2000 character limit reached

Toward Trainability of Deep Quantum Neural Networks (2112.15002v2)

Published 30 Dec 2021 in quant-ph

Abstract: Quantum Neural Networks (QNNs) with random structures have poor trainability due to the exponentially vanishing gradient as the circuit depth and the qubit number increase. This result leads to a general belief that a deep QNN will not be feasible. In this work, we provide the first viable solution to the vanishing gradient problem for deep QNNs with theoretical guarantees. Specifically, we prove that for circuits with controlled-layer architectures, the expectation of the gradient norm can be lower bounded by a value that is independent of the qubit number and the circuit depth. Our results follow from a careful analysis of the gradient behaviour on parameter space consisting of rotation angles, as employed in almost any QNNs, instead of relying on impractical 2-design assumptions. We explicitly construct examples where only our QNNs are trainable and converge, while others in comparison cannot.

Citations (12)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.