Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Recursive Top-Down Production for Sentence Generation with Latent Trees (2010.04704v1)

Published 9 Oct 2020 in cs.CL and cs.LG

Abstract: We model the recursive production property of context-free grammars for natural and synthetic languages. To this end, we present a dynamic programming algorithm that marginalises over latent binary tree structures with $N$ leaves, allowing us to compute the likelihood of a sequence of $N$ tokens under a latent tree model, which we maximise to train a recursive neural function. We demonstrate performance on two synthetic tasks: SCAN (Lake and Baroni, 2017), where it outperforms previous models on the LENGTH split, and English question formation (McCoy et al., 2020), where it performs comparably to decoders with the ground-truth tree structure. We also present experimental results on German-English translation on the Multi30k dataset (Elliott et al., 2016), and qualitatively analyse the induced tree structures our model learns for the SCAN tasks and the German-English translation task.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.