Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequence-to-Sequence Learning with Latent Neural Grammars (2109.01135v7)

Published 2 Sep 2021 in cs.CL and cs.LG

Abstract: Sequence-to-sequence learning with neural networks has become the de facto standard for sequence prediction tasks. This approach typically models the local distribution over the next word with a powerful neural network that can condition on arbitrary context. While flexible and performant, these models often require large datasets for training and can fail spectacularly on benchmarks designed to test for compositional generalization. This work explores an alternative, hierarchical approach to sequence-to-sequence learning with quasi-synchronous grammars, where each node in the target tree is transduced by a node in the source tree. Both the source and target trees are treated as latent and induced during training. We develop a neural parameterization of the grammar which enables parameter sharing over the combinatorial space of derivation rules without the need for manual feature engineering. We apply this latent neural grammar to various domains -- a diagnostic language navigation task designed to test for compositional generalization (SCAN), style transfer, and small-scale machine translation -- and find that it performs respectably compared to standard baselines.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Yoon Kim (92 papers)
Citations (39)

Summary

We haven't generated a summary for this paper yet.