Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Can RNNs learn Recursive Nested Subject-Verb Agreements? (2101.02258v1)

Published 6 Jan 2021 in cs.CL

Abstract: One of the fundamental principles of contemporary linguistics states that language processing requires the ability to extract recursively nested tree structures. However, it remains unclear whether and how this code could be implemented in neural circuits. Recent advances in Recurrent Neural Networks (RNNs), which achieve near-human performance in some language tasks, provide a compelling model to address such questions. Here, we present a new framework to study recursive processing in RNNs, using subject-verb agreement as a probe into the representations of the neural network. We trained six distinct types of RNNs on a simplified probabilistic context-free grammar designed to independently manipulate the length of a sentence and the depth of its syntactic tree. All RNNs generalized to subject-verb dependencies longer than those seen during training. However, none systematically generalized to deeper tree structures, even those with a structural bias towards learning nested tree (i.e., stack-RNNs). In addition, our analyses revealed primacy and recency effects in the generalization patterns of LSTM-based models, showing that these models tend to perform well on the outer- and innermost parts of a center-embedded tree structure, but poorly on its middle levels. Finally, probing the internal states of the model during the processing of sentences with nested tree structures, we found a complex encoding of grammatical agreement information (e.g. grammatical number), in which all the information for multiple words nouns was carried by a single unit. Taken together, these results indicate how neural networks may extract bounded nested tree structures, without learning a systematic recursive rule.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Yair Lakretz (17 papers)
  2. Théo Desbordes (5 papers)
  3. Jean-Rémi King (18 papers)
  4. Benoît Crabbé (9 papers)
  5. Maxime Oquab (15 papers)
  6. Stanislas Dehaene (9 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.