Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Comparison of LSTM and BERT for Small Corpus (2009.05451v1)

Published 11 Sep 2020 in cs.CL and cs.LG

Abstract: Recent advancements in the NLP field showed that transfer learning helps with achieving state-of-the-art results for new tasks by tuning pre-trained models instead of starting from scratch. Transformers have made a significant improvement in creating new state-of-the-art results for many NLP tasks including but not limited to text classification, text generation, and sequence labeling. Most of these success stories were based on large datasets. In this paper we focus on a real-life scenario that scientists in academia and industry face frequently: given a small dataset, can we use a large pre-trained model like BERT and get better results than simple models? To answer this question, we use a small dataset for intent classification collected for building chatbots and compare the performance of a simple bidirectional LSTM model with a pre-trained BERT model. Our experimental results show that bidirectional LSTM models can achieve significantly higher results than a BERT model for a small dataset and these simple models get trained in much less time than tuning the pre-trained counterparts. We conclude that the performance of a model is dependent on the task and the data, and therefore before making a model choice, these factors should be taken into consideration instead of directly choosing the most popular model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Aysu Ezen-Can (4 papers)
Citations (103)