Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

CAD-PU: A Curvature-Adaptive Deep Learning Solution for Point Set Upsampling (2009.04660v1)

Published 10 Sep 2020 in cs.CV

Abstract: Point set is arguably the most direct approximation of an object or scene surface, yet its practical acquisition often suffers from the shortcoming of being noisy, sparse, and possibly incomplete, which restricts its use for a high-quality surface recovery. Point set upsampling aims to increase its density and regularity such that a better surface recovery could be achieved. The problem is severely ill-posed and challenging, considering that the upsampling target itself is only an approximation of the underlying surface. Motivated to improve the surface approximation via point set upsampling, we identify the factors that are critical to the objective, by pairing the surface approximation error bounds of the input and output point sets. It suggests that given a fixed budget of points in the upsampling result, more points should be distributed onto the surface regions where local curvatures are relatively high. To implement the motivation, we propose a novel design of Curvature-ADaptive Point set Upsampling network (CAD-PU), the core of which is a module of curvature-adaptive feature expansion. To train CAD-PU, we follow the same motivation and propose geometrically intuitive surrogates that approximate discrete notions of surface curvature for the upsampled point set. We further integrate the proposed surrogates into an adversarial learning based curvature minimization objective, which gives a practically effective learning of CAD-PU. We conduct thorough experiments that show the efficacy of our contributions and the advantages of our method over existing ones. Our implementation codes are publicly available at https://github.com/JiehongLin/CAD-PU.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com