Papers
Topics
Authors
Recent
Search
2000 character limit reached

PC$^2$-PU: Patch Correlation and Point Correlation for Effective Point Cloud Upsampling

Published 20 Sep 2021 in cs.CV | (2109.09337v3)

Abstract: Point cloud upsampling is to densify a sparse point set acquired from 3D sensors, providing a denser representation for the underlying surface. Existing methods divide the input points into small patches and upsample each patch separately, however, ignoring the global spatial consistency between patches. In this paper, we present a novel method PC$2$-PU, which explores patch-to-patch and point-to-point correlations for more effective and robust point cloud upsampling. Specifically, our network has two appealing designs: (i) We take adjacent patches as supplementary inputs to compensate the loss structure information within a single patch and introduce a Patch Correlation Module to capture the difference and similarity between patches. (ii) After augmenting each patch's geometry, we further introduce a Point Correlation Module to reveal the relationship of points inside each patch to maintain the local spatial consistency. Extensive experiments on both synthetic and real scanned datasets demonstrate that our method surpasses previous upsampling methods, particularly with the noisy inputs. The code and data are at \url{https://github.com/chenlongwhu/PC2-PU.git}.

Citations (21)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.