Papers
Topics
Authors
Recent
2000 character limit reached

Fatigue Assessment using ECG and Actigraphy Sensors

Published 6 Aug 2020 in cs.LG, cs.CV, and stat.ML | (2008.02871v2)

Abstract: Fatigue is one of the key factors in the loss of work efficiency and health-related quality of life, and most fatigue assessment methods were based on self-reporting, which may suffer from many factors such as recall bias. To address this issue, we developed an automated system using wearable sensing and machine learning techniques for objective fatigue assessment. ECG/Actigraphy data were collected from subjects in free-living environments. Preprocessing and feature engineering methods were applied, before interpretable solution and deep learning solution were introduced. Specifically, for interpretable solution, we proposed a feature selection approach which can select less correlated and high informative features for better understanding system's decision-making process. For deep learning solution, we used state-of-the-art self-attention model, based on which we further proposed a consistency self-attention (CSA) mechanism for fatigue assessment. Extensive experiments were conducted, and very promising results were achieved.

Citations (24)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.