Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Exercise Fatigue Detection Model Based on Machine Learning Methods (1803.07952v1)

Published 7 Mar 2018 in stat.ML and cs.LG

Abstract: This study proposes an exercise fatigue detection model based on real-time clinical data which includes time domain analysis, frequency domain analysis, detrended fluctuation analysis, approximate entropy, and sample entropy. Furthermore, this study proposed a feature extraction method which is combined with an analytical hierarchy process to analyze and extract critical features. Finally, machine learning algorithms were adopted to analyze the data of each feature for the detection of exercise fatigue. The practical experimental results showed that the proposed exercise fatigue detection model and feature extraction method could precisely detect the level of exercise fatigue, and the accuracy of exercise fatigue detection could be improved up to 98.65%.

Citations (1)

Summary

We haven't generated a summary for this paper yet.