Complete $L_\infty$-algebras and their homotopy theory (2008.01706v3)
Abstract: We analyze a model for the homotopy theory of complete filtered $L_\infty$-algebras intended for applications in algebraic and algebro-geometric deformation theory. We provide an explicit proof of an unpublished result of E.\ Getzler which states that the category $\hat{\mathsf{Lie}}\infty$ of such $L\infty$-algebras and filtration-preserving $\infty$-morphisms admits the structure of a category of fibrant objects (CFO) for a homotopy theory. Novel applications of our approach include explicit models for homotopy pullbacks, and an analog of Whitehead's Theorem: under some mild conditions, every filtered $L_\infty$-quasi-isomorphism in $\hat{\mathsf{Lie}}\infty$ has a filtration preserving homotopy inverse. Also, we show that the simplicial Maurer--Cartan functor, which assigns a Kan simplicial set to each $L\infty$-algebra in $\hat{\mathsf{Lie}}_\infty$, is an exact functor between the respective CFOs. Finally, we provide an obstruction theory for the general problem of lifting a Maurer-Cartan element through an $\infty$-morphism. The obstruction classes reside in the associated graded mapping cone of the corresponding tangent map.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.