Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A new approach to rational stable parametrized homotopy theory (2509.11393v1)

Published 14 Sep 2025 in math.AT

Abstract: This work develops a comprehensive algebraic model for rational stable parametrized homotopy theory over arbitrary base spaces. Building on the simplicial analogue of the foundational framework of May-Sigurdsson for parametrized spectra, and the homotopy theory of complete differential graded Lie algebras, we construct an explicit sequence of Quillen equivalences that translate the homotopy theory of rational spectra of retractive simplicial sets into the purely algebraic framework of complete differential graded modules over the completed universal enveloping algebra $\widehat{UL}$ of a Lie model $L$ of the base simplicial set $B$. Explicitly, there is a sequence of Quillen adjunctions $$ \mathbf{Sp}B \leftrightarrows \mathbf{Sp}_L \leftrightarrows \mathbf{Sp}{\widehat{UL}}0 \leftrightarrows \mathbf{cdgm}{\widehat{UL}} $$ which induces a natural, strong monoidal equivalence of categories $$ {\rm Ho}\,\mathbf{Sp}_B{\Bbb Q}\cong {\rm Ho}\, \mathbf{cdgm}{\widehat{UL}}. $$ This equivalence is highly effective in practice as it provides direct computational access to invariants of simplicial spectra by translating them into homotopy invariants of $\widehat{UL}$-modules. Here $\mathbf{Sp}B$ denotes the stable model category of spectra of retractive simplicial sets over $B$, $\mathbf{Sp}_L$ denotes the stable model category of spectra of retractive complete differential graded Lie algebras over $L$, $\mathbf{Sp}{\widehat{UL}}0$ denotes the stable model category of connected $\widehat{UL}$-module spectra, and $\mathbf{cdgm}_{\widehat{UL}}$ denotes the category of complete differential graded $\widehat{UL}$-modules.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.