Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 166 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

An explicit model for the homotopy theory of finite type Lie $n$-algebras (1809.05999v3)

Published 17 Sep 2018 in math.AT and math.QA

Abstract: Lie $n$-algebras are the $L_\infty$ analogs of chain Lie algebras from rational homotopy theory. Henriques showed that finite type Lie $n$-algebras can be integrated to produce certain simplicial Banach manifolds, known as Lie $\infty$-groups, via a smooth analog of Sullivan's realization functor. In this paper, we provide an explicit proof that the category of finite type Lie $n$-algebras and (weak) $L_\infty$-morphisms admits the structure of a category of fibrant objects (CFO) for a homotopy theory. Roughly speaking, this CFO structure can be thought of as the transfer of the classical projective CFO structure on non-negatively graded chain complexes via the tangent functor. In particular, the weak equivalences are precisely the $L_\infty$ quasi-isomorphisms. Along the way, we give explicit constructions for pullbacks and factorizations of $L_\infty$-morphisms between finite type Lie $n$-algebras. We also analyze Postnikov towers and Maurer-Cartan/deformation functors associated to such Lie $n$-algebras. The main application of this work is our joint paper arXiv:1609.01394 with C. Zhu which characterizes the compatibility of Henriques' integration functor with the homotopy theory of Lie $n$-algebras and that of Lie $\infty$-groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube