Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Machine Translation model for University Email Application (2007.16011v1)

Published 20 Jul 2020 in cs.CL, cs.AI, and cs.LG

Abstract: Machine translation has many applications such as news translation, email translation, official letter translation etc. Commercial translators, e.g. Google Translation lags in regional vocabulary and are unable to learn the bilingual text in the source and target languages within the input. In this paper, a regional vocabulary-based application-oriented Neural Machine Translation (NMT) model is proposed over the data set of emails used at the University for communication over a period of three years. A state-of-the-art Sequence-to-Sequence Neural Network for ML -> EN and EN -> ML translations is compared with Google Translate using Gated Recurrent Unit Recurrent Neural Network machine translation model with attention decoder. The low BLEU score of Google Translation in comparison to our model indicates that the application based regional models are better. The low BLEU score of EN -> ML of our model and Google Translation indicates that the Malay Language has complex language features corresponding to English.

Citations (3)

Summary

We haven't generated a summary for this paper yet.