Papers
Topics
Authors
Recent
2000 character limit reached

Robust Template Matching via Hierarchical Convolutional Features from a Shape Biased CNN

Published 31 Jul 2020 in cs.CV | (2007.15817v3)

Abstract: Finding a template in a search image is an important task underlying many computer vision applications. Recent approaches perform template matching in a deep feature-space, produced by a convolutional neural network (CNN), which is found to provide more tolerance to changes in appearance. In this article we investigate if enhancing the CNN's encoding of shape information can produce more distinguishable features that improve the performance of template matching. This investigation results in a new template matching method that produces state-of-the-art results on a standard benchmark. To confirm these results we also create a new benchmark and show that the proposed method also outperforms existing techniques on this new dataset. Our code and dataset is available at: https://github.com/iminfine/Deep-DIM.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.