Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

QATM: Quality-Aware Template Matching For Deep Learning (1903.07254v2)

Published 18 Mar 2019 in cs.CV

Abstract: Finding a template in a search image is one of the core problems many computer vision, such as semantic image semantic, image-to-GPS verification \etc. We propose a novel quality-aware template matching method, QATM, which is not only used as a standalone template matching algorithm, but also a trainable layer that can be easily embedded into any deep neural network. Specifically, we assess the quality of a matching pair using soft-ranking among all matching pairs, and thus different matching scenarios such as 1-to-1, 1-to-many, and many-to-many will be all reflected to different values. Our extensive evaluation on classic template matching benchmarks and deep learning tasks demonstrate the effectiveness of QATM. It not only outperforms state-of-the-art template matching methods when used alone, but also largely improves existing deep network solutions.

Citations (50)

Summary

We haven't generated a summary for this paper yet.