Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Template Matching Advances and Applications in Image Analysis (1610.07231v1)

Published 23 Oct 2016 in cs.CV and cs.AI

Abstract: In most computer vision and image analysis problems, it is necessary to define a similarity measure between two or more different objects or images. Template matching is a classic and fundamental method used to score similarities between objects using certain mathematical algorithms. In this paper, we reviewed the basic concept of matching, as well as advances in template matching and applications such as invariant features or novel applications in medical image analysis. Additionally, deformable models and templates originating from classic template matching were discussed. These models have broad applications in image registration, and they are a fundamental aspect of novel machine vision or deep learning algorithms, such as convolutional neural networks (CNN), which perform shift and scale invariant functions followed by classification. In general, although template matching methods have restrictions which limit their application, they are recommended for use with other object recognition methods as pre- or post-processing steps. Combining a template matching technique such as normalized cross-correlation or dice coefficient with a robust decision-making algorithm yields a significant improvement in the accuracy rate for object detection and recognition.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (46)

Summary

We haven't generated a summary for this paper yet.