Papers
Topics
Authors
Recent
2000 character limit reached

Finding the Global Optimum of a Class of Quartic Minimization Problem

Published 19 Jul 2020 in math.NA and cs.NA | (2007.09630v3)

Abstract: We consider a special nonconvex quartic minimization problem over a single spherical constraint, which includes the discretized energy functional minimization problem of non-rotating Bose-Einstein condensates (BECs) as one of the important applications. Such a problem is studied by exploiting its characterization as a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv), which admits a unique nonnegative eigenvector, and this eigenvector is exactly the global minimizer to the quartic minimization. With these properties, any algorithm converging to the nonnegative stationary point of this optimization problem finds its global minimum, such as the regularized Newton (RN) method. In particular, we obtain the global convergence to global optimum of the inexact alternating direction method of multipliers (ADMM) for this problem. Numerical experiments for applications in non-rotating BEC validate our theories.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.