Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Ground states and their characterization of spin-$F$ Bose-Einstein condensates (1907.01194v1)

Published 2 Jul 2019 in math.NA and cs.NA

Abstract: The computation of the ground states of spin-$F$ Bose-Einstein condensates (BECs) can be formulated as an energy minimization problem with two quadratic constraints. We discretize the energy functional and constraints using the Fourier pseudospectral schemes and view the discretized problem as an optimization problem on manifold. Three different types of retractions to the manifold are designed. They enable us to apply various optimization methods on manifold to solve the problem. Specifically, an adaptive regularized Newton method is used together with a cascadic multigrid technique to accelerate the convergence. According to our limited knowledege, our method is the first applicable algorithm for BECs with an arbitrary integer spin, including the complicated spin-3 BECs. Extensive numerical results on ground states of spin-1, spin-2 and spin-3 BECs with diverse interaction and optical lattice potential in one/two/three dimensions are reported to show the efficiency of our method and to demonstrate some interesting physical phenomena.

Citations (2)

Summary

We haven't generated a summary for this paper yet.