Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

Dichotomizing $k$-vertex-critical $H$-free graphs for $H$ of order four (2007.00057v1)

Published 30 Jun 2020 in math.CO and cs.DM

Abstract: For $k \geq 3$, we prove (i) there is a finite number of $k$-vertex-critical $(P_2+\ell P_1)$-free graphs and (ii) $k$-vertex-critical $(P_3+P_1)$-free graphs have at most $2k-1$ vertices. Together with previous research, these results imply the following characterization where $H$ is a graph of order four: There is a finite number of $k$-vertex-critical $H$-free graphs for fixed $k \geq 5$ if and only if $H$ is one of $\overline{K_4}, P_4, P_2 + 2P_1$, or $P_3 + P_1$. Our results imply the existence of new polynomial-time certifying algorithms for deciding the $k$-colorability of $(P_2+\ell P_1)$-free graphs for fixed $k$.

Citations (8)

Summary

We haven't generated a summary for this paper yet.