Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the finiteness of $k$-vertex-critical $2P_2$-free graphs with forbidden induced squids or bulls (2402.15908v1)

Published 24 Feb 2024 in math.CO and cs.DM

Abstract: A graph is $k$-vertex-critical if $\chi(G)=k$ but $\chi(G-v)<k$ for all $v\in V(G)$ and $(G,H)$-free if it contains no induced subgraph isomorphic to $G$ or $H$. We show that there are only finitely many $k$-vertex-critical $(2P_2,H)$-free graphs for all $k$ when $H$ is isomorphic to any of the following graphs of order $5$: $bull$, $chair$, $claw+P_1$, or $\overline{diamond+P_1}$. The latter three are corollaries of more general results where $H$ is isomorphic to $(m, \ell)$-$squid$ for $m=3,4$ and any $\ell\ge 1$ where an $(m,\ell)$-$squid$ is the graph obtained from an $m$-cycle by attaching $\ell$ leaves to a single vertex of the cycle. For each of the graphs $H$ above and any fixed $k$, our results imply the existence of polynomial-time certifying algorithms for deciding the $k$-colourability problem for $(2P_2,H)$-free graphs. Further, our structural classifications allow us to exhaustively generate, with aid of computer search, all $k$-vertex-critical $(2P_2,H)$-free graphs for $k\le 7$ when $H=bull$ or $H=(4,1)$-$squid$ (also known as $banner$).

Definition Search Book Streamline Icon: https://streamlinehq.com
References (36)
  1. Vertex-critical (P3+ℓ⁢P1)subscript𝑃3ℓsubscript𝑃1({P}_{3}+\ell{P}_{1})( italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + roman_ℓ italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )-free and vertex-critical (gem, co-gem)-free graphs. Discrete Appl. Math., 344:179–187, 2024.
  2. O. Borodin and A. Kostochka. On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density. J. Combin., Ser. B, 23(2):247–250, 1977.
  3. Homogeneous sets, clique-separators, critical graphs, and optimal χ𝜒\chiitalic_χ-binding functions. Discrete Appl. Math., 320:211–222, 2022.
  4. D. Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256, apr 1979.
  5. A certifying algorithm for 3-colorability of P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. In Y. Dong, D.-Z. Du, and O. Ibarra, editors, Algorithms and Computation, pages 594–604, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
  6. Some results on k𝑘kitalic_k-critical P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. Discrete Appl. Math., 334:91–100, 2023.
  7. Vertex-critical (P5,b⁢a⁢n⁢n⁢e⁢r)subscript𝑃5𝑏𝑎𝑛𝑛𝑒𝑟({P_{5}},banner)( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_b italic_a italic_n italic_n italic_e italic_r )-free graphs. In Frontiers in Algorithmics - 13th International Workshop, FAW 2019, Sanya, China, April 29 - May 3, 2019, Proceedings, volume 11458, pages 111–120. Springer, 2019.
  8. B. Cameron. P3P1free_critical: https://github.com/benrkcameron/P3P1free_critical, 2021.
  9. B. Cameron. 2P2bullfree: https://github.com/benrkcameron/2P2bull, 2023.
  10. B. Cameron and C. T. Hoàng. A refinement on the structure of vertex-critical (P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT, gem)-free graphs. Theoret. Comput. Sci., 961:113936, 2023.
  11. B. Cameron and C. T. Hoàng. Infinite families of k𝑘kitalic_k-vertex-critical (P5,C5)subscript𝑃5subscript𝐶5({P}_{5},{C}_{5})( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT )-free graphs. to appear in Graphs Combin., 2024.
  12. Dichotomizing k𝑘kitalic_k-vertex-critical H𝐻Hitalic_H-free graphs for H𝐻Hitalic_H of order four. Discrete Appl. Math., 312:106–115, 2022. Ninth Workshop on Graph Classes, Optimization, and Width Parameters.
  13. k𝑘kitalic_k-Critical graphs in P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. Theoret. Comput. Sci., 864:80–91, 2021.
  14. Obstructions for three-coloring graphs without induced paths on six vertices. J. Combin., Ser. B, 140:45–83, 2020.
  15. The strong perfect graph theorem. Ann. of Math., 164(1):51–229, 2006.
  16. Four-coloring P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. I. Extending an excellent precoloring. preprint, arXiv : 1802.02282[math.CO], 2018.
  17. Four-coloring P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. II. Finding an excellent precoloring. preprint, arXiv : 1802.02283[math.CO], 2018.
  18. Four-coloring P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 1239–1256, USA, 2019. Society for Industrial and Applied Mathematics.
  19. Coloring (P5,(P_{5},( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ,gem))))-free graphs with Δ−1Δ1\Delta-1roman_Δ - 1 colors. J. Graph Theory, 101(4):633–642, 2022.
  20. On color-critical (P5,(P_{5},( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ,co-P5)P_{5})italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT )-free graphs. Discrete Appl. Math., 216:142–148, 2017.
  21. U. K. Gupta and D. Pradhan. Borodin–Kostochka’s conjecture on (P5,C4)subscript𝑃5subscript𝐶4({P}_{5},{C}_{4})( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT )-free graphs. J. Appl. Math. Comput., 65(1):877–884, 2021.
  22. M. M. Halldórsson. A still better performance guarantee for approximate graph coloring. Inform. Process. Lett., 45(1):19–23, 1993.
  23. P. Haxell and R. Naserasr. A Note on ΔΔ\Deltaroman_Δ-Critical Graphs. Graphs Combin., 39:101, 2023.
  24. Deciding k𝑘kitalic_k-colorability of P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs in polynomial time. Algorithmica, 57:74–81, 2010.
  25. Constructions of k𝑘kitalic_k-critical P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. Discrete Appl. Math., 182:91–98, 2015.
  26. I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
  27. S. Huang. Improved complexity results on k𝑘kitalic_k-coloring Ptsubscript𝑃𝑡P_{t}italic_P start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT-free graphs. European J. Combin., 51:336–346, 2016.
  28. Critical (P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT, bull)-free graphs. Discrete Appl. Math., 334:15–25, 2023.
  29. S. Huang and Z. Li. Vertex-Critical (P5,c⁢h⁢a⁢i⁢r)subscript𝑃5𝑐ℎ𝑎𝑖𝑟(P_{5},chair)( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_c italic_h italic_a italic_i italic_r )-free Graphs. Discrete Appl. Math., 341:9–15, 2023.
  30. M. Kamiński and V. Lozin. Coloring edges and vertices of graphs without short or long cycles. Contrib. Discrete Math., 2(1):61–66, 2007.
  31. M. Kamiński and A. Pstrucha. Certifying coloring algorithms for graphs without long induced paths. Discrete Appl. Math., 261:258–267, 2019.
  32. R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–103, 1972.
  33. D. Leven and Z. Gail. NP completeness of finding the chromatic index of regular graphs. J. Algorithms, 4:35–44, 1983.
  34. F. Maffray and G. Morel. On 3333-colorable P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. SIAM J. Discrete Math., 26(4):1682–1708, 2012.
  35. D. Wu and rong Wu. Borodin-Kostochka conjecture for a class of P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. preprint, arXiv : arXiv:2306.12062 [math.CO], 2023.
  36. Critical (P5,d⁢a⁢r⁢t)subscript𝑃5𝑑𝑎𝑟𝑡(P_{5},dart)( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_d italic_a italic_r italic_t )-Free Graphs. preprint, arXiv : arXiv:2308.03414[math.CO], 2023.

Summary

We haven't generated a summary for this paper yet.