On the finiteness of $k$-vertex-critical $2P_2$-free graphs with forbidden induced squids or bulls (2402.15908v1)
Abstract: A graph is $k$-vertex-critical if $\chi(G)=k$ but $\chi(G-v)<k$ for all $v\in V(G)$ and $(G,H)$-free if it contains no induced subgraph isomorphic to $G$ or $H$. We show that there are only finitely many $k$-vertex-critical $(2P_2,H)$-free graphs for all $k$ when $H$ is isomorphic to any of the following graphs of order $5$: $bull$, $chair$, $claw+P_1$, or $\overline{diamond+P_1}$. The latter three are corollaries of more general results where $H$ is isomorphic to $(m, \ell)$-$squid$ for $m=3,4$ and any $\ell\ge 1$ where an $(m,\ell)$-$squid$ is the graph obtained from an $m$-cycle by attaching $\ell$ leaves to a single vertex of the cycle. For each of the graphs $H$ above and any fixed $k$, our results imply the existence of polynomial-time certifying algorithms for deciding the $k$-colourability problem for $(2P_2,H)$-free graphs. Further, our structural classifications allow us to exhaustively generate, with aid of computer search, all $k$-vertex-critical $(2P_2,H)$-free graphs for $k\le 7$ when $H=bull$ or $H=(4,1)$-$squid$ (also known as $banner$).
- Vertex-critical (P3+ℓP1)subscript𝑃3ℓsubscript𝑃1({P}_{3}+\ell{P}_{1})( italic_P start_POSTSUBSCRIPT 3 end_POSTSUBSCRIPT + roman_ℓ italic_P start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )-free and vertex-critical (gem, co-gem)-free graphs. Discrete Appl. Math., 344:179–187, 2024.
- O. Borodin and A. Kostochka. On an upper bound of a graph’s chromatic number, depending on the graph’s degree and density. J. Combin., Ser. B, 23(2):247–250, 1977.
- Homogeneous sets, clique-separators, critical graphs, and optimal χ𝜒\chiitalic_χ-binding functions. Discrete Appl. Math., 320:211–222, 2022.
- D. Brélaz. New methods to color the vertices of a graph. Commun. ACM, 22(4):251–256, apr 1979.
- A certifying algorithm for 3-colorability of P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. In Y. Dong, D.-Z. Du, and O. Ibarra, editors, Algorithms and Computation, pages 594–604, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.
- Some results on k𝑘kitalic_k-critical P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. Discrete Appl. Math., 334:91–100, 2023.
- Vertex-critical (P5,banner)subscript𝑃5𝑏𝑎𝑛𝑛𝑒𝑟({P_{5}},banner)( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_b italic_a italic_n italic_n italic_e italic_r )-free graphs. In Frontiers in Algorithmics - 13th International Workshop, FAW 2019, Sanya, China, April 29 - May 3, 2019, Proceedings, volume 11458, pages 111–120. Springer, 2019.
- B. Cameron. P3P1free_critical: https://github.com/benrkcameron/P3P1free_critical, 2021.
- B. Cameron. 2P2bullfree: https://github.com/benrkcameron/2P2bull, 2023.
- B. Cameron and C. T. Hoàng. A refinement on the structure of vertex-critical (P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT, gem)-free graphs. Theoret. Comput. Sci., 961:113936, 2023.
- B. Cameron and C. T. Hoàng. Infinite families of k𝑘kitalic_k-vertex-critical (P5,C5)subscript𝑃5subscript𝐶5({P}_{5},{C}_{5})( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT )-free graphs. to appear in Graphs Combin., 2024.
- Dichotomizing k𝑘kitalic_k-vertex-critical H𝐻Hitalic_H-free graphs for H𝐻Hitalic_H of order four. Discrete Appl. Math., 312:106–115, 2022. Ninth Workshop on Graph Classes, Optimization, and Width Parameters.
- k𝑘kitalic_k-Critical graphs in P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. Theoret. Comput. Sci., 864:80–91, 2021.
- Obstructions for three-coloring graphs without induced paths on six vertices. J. Combin., Ser. B, 140:45–83, 2020.
- The strong perfect graph theorem. Ann. of Math., 164(1):51–229, 2006.
- Four-coloring P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. I. Extending an excellent precoloring. preprint, arXiv : 1802.02282[math.CO], 2018.
- Four-coloring P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. II. Finding an excellent precoloring. preprint, arXiv : 1802.02283[math.CO], 2018.
- Four-coloring P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’19, page 1239–1256, USA, 2019. Society for Industrial and Applied Mathematics.
- Coloring (P5,(P_{5},( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ,gem))))-free graphs with Δ−1Δ1\Delta-1roman_Δ - 1 colors. J. Graph Theory, 101(4):633–642, 2022.
- On color-critical (P5,(P_{5},( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT ,co-P5)P_{5})italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT )-free graphs. Discrete Appl. Math., 216:142–148, 2017.
- U. K. Gupta and D. Pradhan. Borodin–Kostochka’s conjecture on (P5,C4)subscript𝑃5subscript𝐶4({P}_{5},{C}_{4})( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_C start_POSTSUBSCRIPT 4 end_POSTSUBSCRIPT )-free graphs. J. Appl. Math. Comput., 65(1):877–884, 2021.
- M. M. Halldórsson. A still better performance guarantee for approximate graph coloring. Inform. Process. Lett., 45(1):19–23, 1993.
- P. Haxell and R. Naserasr. A Note on ΔΔ\Deltaroman_Δ-Critical Graphs. Graphs Combin., 39:101, 2023.
- Deciding k𝑘kitalic_k-colorability of P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs in polynomial time. Algorithmica, 57:74–81, 2010.
- Constructions of k𝑘kitalic_k-critical P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. Discrete Appl. Math., 182:91–98, 2015.
- I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
- S. Huang. Improved complexity results on k𝑘kitalic_k-coloring Ptsubscript𝑃𝑡P_{t}italic_P start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT-free graphs. European J. Combin., 51:336–346, 2016.
- Critical (P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT, bull)-free graphs. Discrete Appl. Math., 334:15–25, 2023.
- S. Huang and Z. Li. Vertex-Critical (P5,chair)subscript𝑃5𝑐ℎ𝑎𝑖𝑟(P_{5},chair)( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_c italic_h italic_a italic_i italic_r )-free Graphs. Discrete Appl. Math., 341:9–15, 2023.
- M. Kamiński and V. Lozin. Coloring edges and vertices of graphs without short or long cycles. Contrib. Discrete Math., 2(1):61–66, 2007.
- M. Kamiński and A. Pstrucha. Certifying coloring algorithms for graphs without long induced paths. Discrete Appl. Math., 261:258–267, 2019.
- R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pages 85–103, 1972.
- D. Leven and Z. Gail. NP completeness of finding the chromatic index of regular graphs. J. Algorithms, 4:35–44, 1983.
- F. Maffray and G. Morel. On 3333-colorable P5subscript𝑃5P_{5}italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT-free graphs. SIAM J. Discrete Math., 26(4):1682–1708, 2012.
- D. Wu and rong Wu. Borodin-Kostochka conjecture for a class of P6subscript𝑃6P_{6}italic_P start_POSTSUBSCRIPT 6 end_POSTSUBSCRIPT-free graphs. preprint, arXiv : arXiv:2306.12062 [math.CO], 2023.
- Critical (P5,dart)subscript𝑃5𝑑𝑎𝑟𝑡(P_{5},dart)( italic_P start_POSTSUBSCRIPT 5 end_POSTSUBSCRIPT , italic_d italic_a italic_r italic_t )-Free Graphs. preprint, arXiv : arXiv:2308.03414[math.CO], 2023.