Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

3D Probabilistic Segmentation and Volumetry from 2D projection images (2006.12809v1)

Published 23 Jun 2020 in eess.IV and cs.CV

Abstract: X-Ray imaging is quick, cheap and useful for front-line care assessment and intra-operative real-time imaging (e.g., C-Arm Fluoroscopy). However, it suffers from projective information loss and lacks vital volumetric information on which many essential diagnostic biomarkers are based on. In this paper we explore probabilistic methods to reconstruct 3D volumetric images from 2D imaging modalities and measure the models' performance and confidence. We show our models' performance on large connected structures and we test for limitations regarding fine structures and image domain sensitivity. We utilize fast end-to-end training of a 2D-3D convolutional networks, evaluate our method on 117 CT scans segmenting 3D structures from digitally reconstructed radiographs (DRRs) with a Dice score of $0.91 \pm 0.0013$. Source code will be made available by the time of the conference.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Youtube Logo Streamline Icon: https://streamlinehq.com