Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Probabilistic Decoupling of Labels in Classification (2006.09046v1)

Published 16 Jun 2020 in cs.LG and stat.ML

Abstract: In this paper we develop a principled, probabilistic, unified approach to non-standard classification tasks, such as semi-supervised, positive-unlabelled, multi-positive-unlabelled and noisy-label learning. We train a classifier on the given labels to predict the label-distribution. We then infer the underlying class-distributions by variationally optimizing a model of label-class transitions.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.