2000 character limit reached
Probabilistic Decoupling of Labels in Classification (1905.12403v1)
Published 29 May 2019 in cs.LG and stat.ML
Abstract: We investigate probabilistic decoupling of labels supplied for training, from the underlying classes for prediction. Decoupling enables an inference scheme general enough to implement many classification problems, including supervised, semi-supervised, positive-unlabelled, noisy-label and suggests a general solution to the multi-positive-unlabelled learning problem. We test the method on the Fashion MNIST and 20 News Groups datasets for performance benchmarks, where we simulate noise, partial labelling etc.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.