Instance-Dependent PU Learning by Bayesian Optimal Relabeling (1808.02180v2)
Abstract: When learning from positive and unlabelled data, it is a strong assumption that the positive observations are randomly sampled from the distribution of $X$ conditional on $Y = 1$, where X stands for the feature and Y the label. Most existing algorithms are optimally designed under the assumption. However, for many real-world applications, the observed positive examples are dependent on the conditional probability $P(Y = 1|X)$ and should be sampled biasedly. In this paper, we assume that a positive example with a higher $P(Y = 1|X)$ is more likely to be labelled and propose a probabilistic-gap based PU learning algorithms. Specifically, by treating the unlabelled data as noisy negative examples, we could automatically label a group positive and negative examples whose labels are identical to the ones assigned by a Bayesian optimal classifier with a consistency guarantee. The relabelled examples have a biased domain, which is remedied by the kernel mean matching technique. The proposed algorithm is model-free and thus do not have any parameters to tune. Experimental results demonstrate that our method works well on both generated and real-world datasets.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.