Papers
Topics
Authors
Recent
2000 character limit reached

Stated skein modules of marked 3-manifolds/surfaces, a survey

Published 29 May 2020 in math.GT | (2005.14577v1)

Abstract: We give a survey of some old and new results about the stated skein modules/algebras of 3-manifolds/surfaces. For generic quantum parameter, we discuss the splitting homomorphism for the 3-manifold case, general structures of the stated skein algebras of marked surfaces (or bordered punctured surfaces) and their embeddings into quantum tori. For roots of 1 quantum parameter, we discuss the Frobenius homomorphism (for both marked 3-manifolds and marked surfaces), describe the center of the skein algebra of marked surfaces, the dimension of the skein algebra over the center, and the representation theory of the skein algebra. In particular, we show that the skein algebra of non-closed marked surface at any root of 1 is a maximal order. We give a full description of the Azumaya locus of the skein algebra of the puncture torus and give partial results for closed surfaces.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.