Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Kauffman bracket skein modules of marked 3-manifolds and the Chebyshev-Frobenius homomorphism (1804.09303v2)

Published 25 Apr 2018 in math.GT and math.QA

Abstract: In this paper we study the skein algebras of marked surfaces and the skein modules of marked 3-manifolds. Muller showed that skein algebras of totally marked surfaces may be embedded in easy to study algebras known as quantum tori. We first extend Muller's result to permit marked surfaces with unmarked boundary components. The addition of unmarked components allows us to develop a surgery theory which enables us to extend the Chebyshev homomorphism of Bonahon and Wong between skein algebras of unmarked surfaces to a "Chebyshev-Frobenius homomorphism" between skein modules of marked 3-manifolds. We show that the image of the Chebyshev-Frobenius homomorphism is either transparent or skew-transparent. In addition, we make use of the Muller algebra method to calculate the center of the skein algebra of a marked surface when the quantum parameter is not a root of unity.

Summary

We haven't generated a summary for this paper yet.