Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stated skein modules of 3-manifolds and TQFT (2206.10906v1)

Published 22 Jun 2022 in math.GT and math.QA

Abstract: We study the behaviour of the Kauffman bracket skein modules of 3-manifolds under gluing along surfaces. For this purpose we extend the notion of Kauffman bracket skein modules to $3$-manifolds with marking consisting of open intervals and circles in the boundary. The new module is called the stated skein module. The first main results concern non-injectivity of certain natural maps defined when forming connected sums along a sphere or along a closed disk. These maps are injective for surfaces, or for generic quantum parameter, but we show that in general they are not injective when the quantum parameter is a root of 1. The result applies to the classical skein modules as well. A particular interesting result is that when the quantum parameter is a root of 1, the empty skein is zero in a connected sum where each constituent manifold has non-empty marking. We also prove various non injectivity results for the Chebyshev-Frobenius map and the natural map induced by the deletion of marked balls. We then consider the general case of gluing along a surface, showing that the stated skein module can be interpreted as a monoidal symmetric functor from a category of "decorated cobordisms" to a Morita category of algebras and their bimodules. We apply this result to deduce several properties of stated skein modules as a Van-Kampen like theorem as well as a computation through Heegaard decompositions and a relation to Hochshild homology for trivial circle bundles over surfaces.

Summary

We haven't generated a summary for this paper yet.