Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 102 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Beyond Tree Embeddings -- a Deterministic Framework for Network Design with Deadlines or Delay (2004.07946v1)

Published 16 Apr 2020 in cs.DS

Abstract: We consider network design problems with deadline or delay. All previous results for these models are based on randomized embedding of the graph into a tree (HST) and then solving the problem on this tree. We show that this is not necessary. In particular, we design a deterministic framework for these problems which is not based on embedding. This enables us to provide deterministic $\text{poly-log}(n)$-competitive algorithms for Steiner tree, generalized Steiner tree, node weighted Steiner tree, (non-uniform) facility location and directed Steiner tree with deadlines or with delay (where $n$ is the number of nodes). Our deterministic algorithms also give improved guarantees over some previous randomized results. In addition, we show a lower bound of $\text{poly-log}(n)$ for some of these problems, which implies that our framework is optimal up to the power of the poly-log. Our algorithms and techniques differ significantly from those in all previous considerations of these problems.

Citations (23)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube