Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 89 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 199 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Deterministic Tree Embeddings with Copies for Algorithms Against Adaptive Adversaries (2102.05168v1)

Published 9 Feb 2021 in cs.DS

Abstract: Embeddings of graphs into distributions of trees that preserve distances in expectation are a cornerstone of many optimization algorithms. Unfortunately, online or dynamic algorithms which use these embeddings seem inherently randomized and ill-suited against adaptive adversaries. In this paper we provide a new tree embedding which addresses these issues by deterministically embedding a graph into a single tree containing $O(\log n)$ copies of each vertex while preserving the connectivity structure of every subgraph and $O(\log2 n)$-approximating the cost of every subgraph. Using this embedding we obtain several new algorithmic results: We reduce an open question of Alon et al. [SODA 2004] -- the existence of a deterministic poly-log-competitive algorithm for online group Steiner tree on a general graph -- to its tree case. We give a poly-log-competitive deterministic algorithm for a closely related problem -- online partial group Steiner tree -- which, roughly, is a bicriteria version of online group Steiner tree. Lastly, we give the first poly-log approximations for demand-robust Steiner forest, group Steiner tree and group Steiner forest.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube