Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tracking Performance of Online Stochastic Learners (2004.01942v1)

Published 4 Apr 2020 in math.OC, cs.LG, cs.MA, eess.SP, and stat.ML

Abstract: The utilization of online stochastic algorithms is popular in large-scale learning settings due to their ability to compute updates on the fly, without the need to store and process data in large batches. When a constant step-size is used, these algorithms also have the ability to adapt to drifts in problem parameters, such as data or model properties, and track the optimal solution with reasonable accuracy. Building on analogies with the study of adaptive filters, we establish a link between steady-state performance derived under stationarity assumptions and the tracking performance of online learners under random walk models. The link allows us to infer the tracking performance from steady-state expressions directly and almost by inspection.

Citations (3)

Summary

We haven't generated a summary for this paper yet.