Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast gradient descent for drifting least squares regression, with application to bandits (1307.3176v4)

Published 11 Jul 2013 in cs.LG and stat.ML

Abstract: Online learning algorithms require to often recompute least squares regression estimates of parameters. We study improving the computational complexity of such algorithms by using stochastic gradient descent (SGD) type schemes in place of classic regression solvers. We show that SGD schemes efficiently track the true solutions of the regression problems, even in the presence of a drift. This finding coupled with an $O(d)$ improvement in complexity, where $d$ is the dimension of the data, make them attractive for implementation in the big data settings. In the case when strong convexity in the regression problem is guaranteed, we provide bounds on the error both in expectation and high probability (the latter is often needed to provide theoretical guarantees for higher level algorithms), despite the drifting least squares solution. As an example of this case we prove that the regret performance of an SGD version of the PEGE linear bandit algorithm [Rusmevichientong and Tsitsiklis 2010] is worse that that of PEGE itself only by a factor of $O(\log4 n)$. When strong convexity of the regression problem cannot be guaranteed, we investigate using an adaptive regularisation. We make an empirical study of an adaptively regularised, SGD version of LinUCB [Li et al. 2010] in a news article recommendation application, which uses the large scale news recommendation dataset from Yahoo! front page. These experiments show a large gain in computational complexity, with a consistently low tracking error and click-through-rate (CTR) performance that is $75\%$ close.

Citations (5)

Summary

We haven't generated a summary for this paper yet.