Papers
Topics
Authors
Recent
Search
2000 character limit reached

Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective

Published 22 Mar 2020 in stat.ME, math.ST, and stat.TH | (2003.09915v5)

Abstract: In panel experiments, we randomly assign units to different interventions, measuring their outcomes, and repeating the procedure in several periods. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative effectiveness of alternative treatment paths. For a rich class of dynamic causal effects, we provide a nonparametric estimator that is unbiased over the randomization distribution and derive its finite population limiting distribution as either the sample size or the duration of the experiment increases. We develop two methods for inference: a conservative test for weak null hypotheses and an exact randomization test for sharp null hypotheses. We further analyze the finite population probability limit of linear fixed effects estimators. These commonly-used estimators do not recover a causally interpretable estimand if there are dynamic causal effects and serial correlation in the assignments, highlighting the value of our proposed estimator.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.