Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 444 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Causal Inference in Rebuilding and Extending the Recondite Bridge between Finite Population Sampling and Experimental Design (1606.05279v1)

Published 16 Jun 2016 in stat.ME

Abstract: This article considers causal inference for treatment contrasts from a randomized experiment using potential outcomes in a finite population setting. Adopting a Neymanian repeated sampling approach that integrates such causal inference with finite population survey sampling, an inferential framework is developed for general mechanisms of assigning experimental units to multiple treatments. This framework extends classical methods by allowing the possibility of randomization restrictions and unequal replications. Novel conditions that are "milder" than strict additivity of treatment effects, yet permit unbiased estimation of the finite population sampling variance of any treatment contrast estimator, are derived. The consequences of departures from such conditions are also studied under the criterion of minimax bias, and a new justification for using the Neymanian conservative sampling variance estimator in experiments is provided. The proposed approach can readily be extended to the case of treatments with a general factorial structure.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube