Bridging Finite and Super Population Causal Inference (1702.08615v1)
Abstract: There are two general views in causal analysis of experimental data: the super population view that the units are an independent sample from some hypothetical infinite populations, and the finite population view that the potential outcomes of the experimental units are fixed and the randomness comes solely from the physical randomization of the treatment assignment. These two views differs conceptually and mathematically, resulting in different sampling variances of the usual difference-in-means estimator of the average causal effect. Practically, however, these two views result in identical variance estimators. By recalling a variance decomposition and exploiting a completeness-type argument, we establish a connection between these two views in completely randomized experiments. This alternative formulation could serve as a template for bridging finite and super population causal inference in other scenarios.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.