Papers
Topics
Authors
Recent
Search
2000 character limit reached

Generalization of partitioned Runge--Kutta methods for adjoint systems

Published 22 Mar 2020 in math.NA and cs.NA | (2003.09789v2)

Abstract: This study computes the gradient of a function of numerical solutions of ordinary differential equations (ODEs) with respect to the initial condition. The adjoint method computes the gradient approximately by solving the corresponding adjoint system numerically. In this context, Sanz-Serna [SIAM Rev., 58 (2016), pp. 3--33] showed that when the initial value problem is solved by a Runge--Kutta (RK) method, the gradient can be exactly computed by applying an appropriate RK method to the adjoint system. Focusing on the case where the initial value problem is solved by a partitioned RK (PRK) method, this paper presents a numerical method, which can be seen as a generalization of PRK methods, for the adjoint system that gives the exact gradient.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.