Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 23 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 93 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 183 tok/s Pro
2000 character limit reached

Adjoint DSMC for nonlinear Boltzmann equation constrained optimization (2009.01363v3)

Published 2 Sep 2020 in math.NA, cs.NA, math-ph, math.MP, and math.OC

Abstract: Applications for kinetic equations such as optimal design and inverse problems often involve finding unknown parameters through gradient-based optimization algorithms. Based on the adjoint-state method, we derive two different frameworks for approximating the gradient of an objective functional constrained by the nonlinear Boltzmann equation. While the forward problem can be solved by the DSMC method, it is difficult to efficiently solve the high-dimensional continuous adjoint equation obtained by the "optimize-then-discretize" approach. This challenge motivates us to propose an adjoint DSMC method following the "discretize-then-optimize" approach for Boltzmann-constrained optimization. We also analyze the properties of the two frameworks and their connections. Several numerical examples are presented to demonstrate their accuracy and efficiency.

Citations (18)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.