Extremal clustering under moderate long range dependence and moderately heavy tails (2003.05038v1)
Abstract: We study clustering of the extremes in a stationary sequence with subexponential tails in the maximum domain of attraction of the Gumbel We obtain functional limit theorems in the space of random sup-measures and in the space $D(0,\infty)$. The limits have the Gumbel distribution if the memory is only moderately long. However, as our results demonstrate rather strikingly, the "heuristic of a single big jump" could fail even in a moderately long range dependence setting. As the tails become lighter, the extremal behavior of a stationary process may depend on multiple large values of the driving noise.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.