Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Clustering of high values in random fields (1509.00637v1)

Published 2 Sep 2015 in math.PR

Abstract: The asymptotic results that underlie applications of extreme random fields often assume that the variables are located on a regular discrete grid, identified with $\mathbb{Z}2$, and that they satisfy stationarity and isotropy conditions. Here we extend the existing theory, concerning the asymptotic behavior of the maximum and the extremal index, to non-stationary and anisotropic random fields, defined over discrete subsets of $\mathbb{R}2$. We show that, under a suitable coordinatewise long range dependence condition, the maximum may be regarded as the maximum of an approximately independent sequence of submaxima, although there may be high local dependence leading to clustering of high values. Under restrictions on the local path behavior of high values, criteria are given for the existence and value of the spatial extremal index which plays a key role in determining the cluster sizes and quantifying the strength of dependence between exceedances of high levelsThe general theory is applied to the class of max-stable random fields, for which the extremal index is obtained as a function of well-known tail dependence measures found in the literature, leading to a simple estimation method for this parameter. The results are illustrated with non-stationary Gaussian and 1-dependent random fields. For the latter, a simulation and estimation study is performed.

Summary

We haven't generated a summary for this paper yet.