Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremes for stationary regularly varying random fields over arbitrary index sets (2202.10751v1)

Published 22 Feb 2022 in math.PR, math.ST, and stat.TH

Abstract: We consider the clustering of extremes for stationary regularly varying random fields over arbitrary growing index sets. We study sufficient assumptions on the index set such that the limit of the point random fields of the exceedances above a high threshold exists. Under the so-called anti-clustering condition, the extremal dependence is only local. Thus the index set can have a general form compared to previous literature [3, 21]. However, we cannot describe the clustering of extreme values in terms of the usual spectral tail measure [23] except for hyperrectangles or index sets in the lattice case. Using the recent extension of the spectral measure for star-shaped equipped space [18], the $\upsilon$-spectral tail measure provides a natural extension that describes the clustering effect in full generality.

Summary

We haven't generated a summary for this paper yet.