Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ICAL: Implicit Character-Aided Learning for Enhanced Handwritten Mathematical Expression Recognition (2405.09032v4)

Published 15 May 2024 in cs.CV

Abstract: Significant progress has been made in the field of handwritten mathematical expression recognition, while existing encoder-decoder methods are usually difficult to model global information in $LaTeX$. Therefore, this paper introduces a novel approach, Implicit Character-Aided Learning (ICAL), to mine the global expression information and enhance handwritten mathematical expression recognition. Specifically, we propose the Implicit Character Construction Module (ICCM) to predict implicit character sequences and use a Fusion Module to merge the outputs of the ICCM and the decoder, thereby producing corrected predictions. By modeling and utilizing implicit character information, ICAL achieves a more accurate and context-aware interpretation of handwritten mathematical expressions. Experimental results demonstrate that ICAL notably surpasses the state-of-the-art(SOTA) models, improving the expression recognition rate (ExpRate) by 2.25\%/1.81\%/1.39\% on the CROHME 2014/2016/2019 datasets respectively, and achieves a remarkable 69.06\% on the challenging HME100k test set. We make our code available on the GitHub: https://github.com/qingzhenduyu/ICAL

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com