Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

STANNIS: Low-Power Acceleration of Deep Neural Network Training Using Computational Storage (2002.07215v2)

Published 17 Feb 2020 in cs.DC and cs.LG

Abstract: This paper proposes a framework for distributed, in-storage training of neural networks on clusters of computational storage devices. Such devices not only contain hardware accelerators but also eliminate data movement between the host and storage, resulting in both improved performance and power savings. More importantly, this in-storage processing style of training ensures that private data never leaves the storage while fully controlling the sharing of public data. Experimental results show up to 2.7x speedup and 69% reduction in energy consumption and no significant loss in accuracy.

Citations (5)

Summary

We haven't generated a summary for this paper yet.