Papers
Topics
Authors
Recent
2000 character limit reached

Emotion and Sentiment Lexicon Impact on Sentiment Analysis Applied to Book Reviews

Published 22 Jan 2020 in cs.IR and cs.SI | (2001.07987v1)

Abstract: Consumers are used to consulting posted reviews on the Internet before buying a product. But it's difficult to know the global opinion considering the important number of those reviews. Sentiment analysis afford detecting polarity (positive, negative, neutral) in a expressed opinion and therefore classifying those reviews. Our purpose is to determine the influence of emotions on the polarity of books reviews. We define "bag-of-words" representation models of reviews which use a lexicon containing emotional (anticipation, sadness, fear, anger, joy, surprise, trust, disgust) and sentimental (positive, negative) words. This lexicon afford measuring felt emotions types by readers. The implemented supervised learning used is a Random Forest type. The application concerns Amazon platform's reviews. Mots-cl{\'e}s : Analyse de sentiments, Analyse d'{\'e}motions (texte), Classification de polarit{\'e} de sentiments

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.