Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sentiment Polarity Detection on Bengali Book Reviews Using Multinomial Naive Bayes (2007.02758v1)

Published 6 Jul 2020 in cs.CL

Abstract: Recently, sentiment polarity detection has increased attention to NLP researchers due to the massive availability of customer's opinions or reviews in the online platform. Due to the continued expansion of e-commerce sites, the rate of purchase of various products, including books, are growing enormously among the people. Reader's opinions/reviews affect the buying decision of a customer in most cases. This work introduces a machine learning-based technique to determine sentiment polarities (either positive or negative category) from Bengali book reviews. To assess the effectiveness of the proposed technique, a corpus with 2000 reviews on Bengali books is developed. A comparative analysis with various approaches (such as logistic regression, naive Bayes, SVM, and SGD) also performed by taking into consideration of the unigram, bigram, and trigram features, respectively. Experimental result reveals that the multinomial Naive Bayes with unigram feature outperforms the other techniques with 84% accuracy on the test set.

Citations (36)

Summary

We haven't generated a summary for this paper yet.